Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling.

نویسندگان

  • Björn C Knollmann
  • Paulus Kirchhof
  • Syevda G Sirenko
  • Hubertus Degen
  • Anne E Greene
  • Tilmann Schober
  • Jessica C Mackow
  • Larissa Fabritz
  • James D Potter
  • Martin Morad
چکیده

The cardiac troponin T (TnT) I79N mutation has been linked to familial hypertrophic cardiomyopathy and high incidence of sudden death, despite causing little or no cardiac hypertrophy in patients. Transgenic mice expressing mutant human TnT (I79N-Tg) have increased cardiac contractility, but no ventricular hypertrophy or fibrosis. Enhanced cardiac function has been associated with myofilament Ca2+ sensitization, suggesting altered cellular Ca2+ handling. In the present study, we compare cellular Ca2+ transients and electrophysiological parameters of 64 I79N-Tg and 106 control mice in isolated myocytes, isolated perfused hearts, and whole animals. Ventricular action potentials (APs) measured in isolated I79N-Tg hearts and myocytes were significantly shortened only at 70% repolarization. No significant differences were found either in L-type Ca2+ or transient outward K+ currents, but inward rectifier K+ current (IK1) was significantly decreased. More critically, Ca2+ transients of field-stimulated ventricular I79N-Tg myocytes were reduced and had slow decay kinetics, consistent with increased Ca2+ sensitivity of I79N mutant fibers. AP differences were abolished when myocytes were dialyzed with Ca2+ buffers or after the Na+-Ca2+ exchanger was blocked by Li+. At higher pacing rates or in presence of isoproterenol, diastolic Ca2+ became significantly elevated in I79N-Tg compared with control myocytes. Ventricular ectopy could be induced by isoproterenol-challenge in isolated I79N-Tg hearts and anesthetized I79N-Tg mice. Freely moving I79N-Tg mice had a higher incidence of nonsustained ventricular tachycardia (VT) during mental stress (warm air jets). We conclude that the TnT-I79N mutation causes stress-induced VT even in absence of hypertrophy and/or fibrosis, arising possibly from the combination of AP remodeling related to altered Ca2+ transients and suppression of IK1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Familial Hypertrophic Cardiomyopathy–Linked Mutant Troponin T Causes Stress-Induced Ventricular Tachycardia and Ca -Dependent Action Potential Remodeling

The cardiac troponin T (TnT) I79N mutation has been linked to familial hypertrophic cardiomyopathy and high incidence of sudden death, despite causing little or no cardiac hypertrophy in patients. Transgenic mice expressing mutant human TnT (I79N-Tg) have increased cardiac contractility, but no ventricular hypertrophy or fibrosis. Enhanced cardiac function has been associated with myofilament C...

متن کامل

Myofilament Ca2+ sensitization causes susceptibility to cardiac arrhythmia in mice.

In human cardiomyopathy, anatomical abnormalities such as hypertrophy and fibrosis contribute to the risk of ventricular arrhythmias and sudden death. Here we have shown that increased myofilament Ca2+ sensitivity, also a common feature in both inherited and acquired human cardiomyopathies, created arrhythmia susceptibility in mice, even in the absence of anatomical abnormalities. In mice expre...

متن کامل

Myofilament Ca sensitization increases cytosolic Ca binding affinity, alters intracellular Ca homeostasis, and causes pause-dependent Ca-triggered arrhythmia.

RATIONALE Ca binding to the troponin complex represents a major portion of cytosolic Ca buffering. Troponin mutations that increase myofilament Ca sensitivity are associated with familial hypertrophic cardiomyopathy and confer a high risk for sudden death. In mice, Ca sensitization causes ventricular arrhythmias, but the underlying mechanisms remain unclear. OBJECTIVE To test the hypothesis t...

متن کامل

Cardiac troponin T and familial hypertrophic cardiomyopathy: an energetic affair.

It has long been noted that while patients with familial hypertrophic cardiomyopathy due to cardiac troponin T (cTnT) mutations often suffer sudden cardiac death, they do not develop significant ventricular hypertrophy, suggesting that a distinct cellular mechanism apart from alterations in myocardial contractility is responsible. A new study has revealed that a single missense mutation in cTnT...

متن کامل

Increase in tension-dependent ATP consumption induced by cardiac troponin T mutation.

How different mutations in cardiac troponin T (cTnT) lead to distinct secondary downstream cellular remodeling in familial hypertrophic cardiomyopathy (FHC) remains elusive. To explore the molecular basis for the distinct impact of different mutations in cTnT on cardiac myocytes, we studied mechanical activity of detergent-skinned muscle fiber bundles from different lines of transgenic (TG) mou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 92 4  شماره 

صفحات  -

تاریخ انتشار 2003